
Package: rts (via r-universe)
September 12, 2024

Type Package

Title Raster Time Series Analysis

Version 1.2-5

Date 2024-06-14

Author Babak Naimi

Depends R (>= 3.5.0), terra, xts

Imports methods, zoo, RCurl, raster

Suggests digest, R.rsp

Maintainer Babak Naimi <naimi.b@gmail.com>

Description This framework aims to provide classes and methods for
manipulating and processing of raster time series data (e.g. a
time series of satellite images).

License GPL (>= 3)

URL https://r-gis.net/

VignetteBuilder R.rsp

Repository https://babaknaimi.r-universe.dev

RemoteUrl https://github.com/babaknaimi/rts

RemoteRef HEAD

RemoteSha 6a6f5a5b0a5509e4218e91cf593145845616725a

Contents
apply.monthly . 2
cellFromXY . 3
dimensions . 4
endpoints . 5
extract . 6
Extract by index . 8
index . 10
ModisDownload . 11

1

https://r-gis.net/

2 apply.monthly

period.apply . 15
plot . 16
RasterStackBrickTS-class . 18
read.rts . 19
rts . 20
subset . 22
subset by index . 23
VHPdownload . 24
write.rts . 26

Index 28

apply.monthly Apply a function over calendar periods

Description

Apply a specified function to each distinct period in a given raster time series object.

Usage

apply.daily(x, FUN, ...)
apply.weekly(x, FUN, ...)
apply.monthly(x, FUN, ...)
apply.quarterly(x, FUN, ...)
apply.yearly(x, FUN, ...)

Arguments

x a raster time series (Raster*TS) object, created by rts

FUN an R function
... additional arguments to FUN

Details

These functions offer Simple mechanism to apply a function to non-overlapping time periods, e.g.
weekly, monthly, etc, and return a raster time series object including a raster layer for each period in
the original data, produced by FUN. The end of each period of time is assigned to the corresponding
raster layer in the output.

Value

A raster time series (Raster*TS) object

Author(s)

Babak Naimi

<naimi.b@gmail.com>

https://r-gis.net/

https://r-gis.net/

cellFromXY 3

See Also

endpoints, period.apply,

Examples

Not run:
file <- system.file("external/ndvi", package="rts")

ndvi <- rts(file) # read the ndvi time series from the specified file
ndvi
ndvi.y <- apply.yearly(ndvi, mean) # apply mean function for each year
ndvi.y
ndvi.q <- apply.quarterly(ndvi,sd) # apply sd function for each quarter of years
ndvi.q

End(Not run)

cellFromXY Get cell number from row, column or XY

Description

Get cell number(s) of a Raster*TS object from row and column numbers or X and Y coordinates.

Usage

S4 method for signature 'RasterStackBrickTS,numeric,numeric'
cellFromRowCol(object, row, col)
S4 method for signature 'RasterStackBrickTS'
cellFromXY(object, xy)

S4 method for signature 'SpatRasterTS,numeric,numeric'
cellFromRowCol(object, row, col)
S4 method for signature 'SpatRasterTS'
cellFromXY(object, xy)

Arguments

object SpatRaster

col integer. column number(s)

row integer row number(s)

xy matrix of x and y coordinates

Details

These functions are essentially a wrapper to cellFromRowCol and cellFromXY in raster package,
work with Raster*TS objects.

4 dimensions

Value

row, column or cell number(s). cellFromLine and cellFromPolygon return a list.

Author(s)

Babak Naimi <naimi.b@gmail.com> https://r-gis.net/

Examples

Not run:
file <- system.file("external/ndvi", package="rts")

rt <- rts(file) # read the ndvi time series from the specified file
cellFromRowCol(rt,15,20)

cellFromRowCol(rt,c(16:20),c(11:15))

cellFromXY(rt,c(645000,57345000))

End(Not run)

dimensions Dimensions of a stcube object

Description

Get the number of rows (nrow), columns (ncol), cells (ncell), layers (nlyr), or spatial resolution
of a stcube.

Usage

S4 method for signature 'stcube'
ncol(x)

S4 method for signature 'stcube'
nrow(x)

S4 method for signature 'stcube'
nlyr(x)

S4 method for signature 'stcube'
ncell(x)

S4 method for signature 'stcube'
res(x)

S4 method for signature 'stcube'

https://r-gis.net/

endpoints 5

xres(x)

S4 method for signature 'stcube'
yres(x)

Arguments

x stcube object

Value

integer

Examples

#ncol(r)
#nrow(r)
#nlyr(r)
#dim(r)

endpoints Locate endpoints by time

Description

Extract index values of a given Raster*TS object corresponding to the last observations given a
period specified by on.

Usage

endpoints(x, on="months", k=1)

Arguments

x a raster time series (Raster*TS) object created by rts

on the periods endpoints to find as a character string
k along every k-th element - see notes

Details

This function is, indeed, endpoints in xts that works with Raster*TS objects. It returns a numeric
vector corresponding to the last observation in each period specified by on, with a zero added to the
beginning of the vector, and the index of the last raster in x at the end.

Valid values for the argument on include: “us” (microseconds), “microseconds”, “ms” (millisec-
onds), “milliseconds”, “secs” (seconds), “seconds”, “mins” (minutes), “minutes”, “hours”, “days”,
“weeks”, “months”, “quarters”, and “years”.

6 extract

Value

A numeric vector of endpoints beginning with 0 and ending with a value equal to the number of
raster layers in the x argument.

Note

Windows support for subsecond periods is not supported.

Author(s)

Babak Naimi

<naimi.b@gmail.com>

https://r-gis.net/

See Also

endpoints

Examples

Not run:
file <- system.file("external/ndvi", package="rts")

ndvi <- rts(file) # read the ndvi time series from the specified file

endpoints(ndvi,"years")

endpoints(ndvi,"quarters")

End(Not run)

extract Extract values from raster time series

Description

Extract values from a Raster*TS object for the spatial locations which can be specified by spatial
points, lines, polygons or an Extent (rectangle) object or raster cell number(s).

Details

This function uses the raster and xts packages to extract the values in space and subset them in time
by specifying ISO-8601 compatible range strings. This allows for natural range-based time queries
without requiring prior knowledge of the underlying time object used in construction.

When a raw character vector is used for the time, it is processed as if it was ISO-8601 compliant.
This means that it is parsed from left to right, according to the following specification:

https://r-gis.net/

extract 7

CCYYMMDD HH:MM:SS.ss+

A full description will be expanded from a left-specified truncated one.

Additionally, one may specify range-based queries by simply supplying two time descriptions seper-
ated by a forward slash:

CCYYMMDD HH:MM:SS.ss+/CCYYMMDD HH:MM:SS.ss

The algorithm to parse the above is .parseISO8601 from the xts package.

Value

An rts object.

Methods

extract(x, y, time)

Arguments
x is a raster time series (Raster*TS) object created by rts

y is a SpatialPoints*, SpatialPolygons*, SpatialLines, Extent object, or a vector (rep-
resenting cell numbers)
time is Optional; the time index for which the values in raster should be extracted. It can be
numeric, timeBased or ISO-8601 style (see details)

Author(s)

Babak Naimi

<naimi.b@gmail.com>

https://r-gis.net/

See Also

[.xts and extract

Examples

Not run:
file <- system.file("external/ndvi", package="rts")

ndvi <- rts(file) # read the ndvi time series from the specified file

n1 <- extract(ndvi,125)# extract the time series values at cell number 125 for all times

n1

plot(n1)

n2 <- extract(ndvi,125,"/20090101") # extract the time series values at cell number 125
for all times after 2009-01-01

n2

https://r-gis.net/

8 Extract by index

plot(n2)

n3 <- extract(ndvi,125,"200901/") # extract the time series values at cell number 125 for
all times before 2009-01

n4 <- extract(ndvi,10:20,"2008") # extract the values at cell numbers of 10:20 in
the year of 2008

n4

End(Not run)

Extract by index Exrtract values from raster time series

Description

This is a short-hand method that acts the same as extract. This method extracts values from a
Raster*TS object for spatial locations which can be specified by spatial points, lines, polygons, or
an Extent (rectangle) object or raster cell number(s).

Details

This function uses the raster and xts packages to extract the values in space and subset them in time
by specifying ISO-8601 compatible range strings. This allows for natural range-based time queries
without requiring prior knowledge of the underlying time object used in construction.

When a raw character vector is used for j, it is processed as if it was ISO-8601 compliant. This
means that it is parsed from left to right, according to the following specification:

CCYYMMDD HH:MM:SS.ss+

A full description will be expanded from a left-specified truncated one.

Additionally, one may specify range-based queries by simply supplying two time descriptions seper-
ated by a forward slash:

CCYYMMDD HH:MM:SS.ss+/CCYYMMDD HH:MM:SS.ss

The algorithm to parse the above is .parseISO8601 from the xts package.

Value

rts.

Extract by index 9

Methods

x[i, j]

Arguments
x is a raster time series (Raster*TS) object created by rts

i is a SpatialPoints*, SpatialPolygons*, SpatialLines, Extent object, or a vector (rep-
resenting cell numbers)
j is optional; the time index for which the values in raster should be extracted. It can be
numeric, timeBased or ISO-8601 style (see details)

Author(s)

Babak Naimi

<naimi.b@gmail.com>

https://r-gis.net/

See Also

extract and [.xts

Examples

Not run:
file <- system.file("external/ndvi", package="rts")

ndvi <- rts(file) # read the ndvi time series from the specified file

n1 <- ndvi[125] # extract the time series values at cell number 125 for all available times

n1

plot(n1)

n2 <- ndvi[125,"/20090101"] # extract the time series values at cell number 125 for
all times after 2009-01-01

n2

plot(n2)

n3 <- ndvi[125,"200901/"] # extract the time series values at cell number 125 for all
times before 2009-01

n4 <- ndvi[10:20,"2008-05-01"] #extract the values at cell numbers of 10:20 for
the specified time

n4

End(Not run)

https://r-gis.net/

10 index

index Extracting and replacing the index of raster time series

Description

index is a generic function for extracting the index of a raster time series (Raster*TS) object and
replacing it.

index(x) <- value, can be used to replace index with value, a vector of the same length as the
number of raster layers in Raster*TS object .

Usage

S3 method for class 'RasterStackBrickTS'
index(x, ...)

Arguments

x A RasterStack or RasterBrick object

... further arguments passed to methods

Author(s)

Babak Naimi

<naimi.b@gmail.com>

https://r-gis.net/

See Also

index.xts

Examples

Not run:
file <- system.file("external/ndvi", package="rts")

ndvi <- rts(file) # read the ndvi time series from the specified file

index(ndvi)

End(Not run)

https://r-gis.net/

ModisDownload 11

ModisDownload Download, reproject, and mosaic Modis satellite images

Description

’ModisDownload’ downloads a series of MODIS images in a specific date or a period of times, and
for specified tile(s). It can also use MODIS Reproject Tool (MRT) software to mosaic the down-
loaded images, in case of selecting more than one tile, and reproject them to a specified coordinate
system. As the format of the source images in LP DAAC is HDF, this tool can also convert them
into other formats (i.e. Geotif, hdr).

Usage

setNASAauth(username,password,update,...)

setMRTpath(MRTpath,update,...)

ModisDownload(x,h,v,dates, ...)

getMODIS(x,h,v,dates,version='006',forceReDownload=TRUE,ncore='auto')

mosaicHDF(hdfNames,filename,MRTpath,bands_subset,delete=FALSE)

reprojectHDF(hdfName,crs,subset,resample_method,filename,...)

modisProducts(version=NULL)

getNativePixelSize(product)

getNativeTemporalResolution(product)

Arguments

username character; username for authentication

password character; password for authentication

update logical; specifies whether .nerc file that has been previously created by set-
NASAauth, should be updated

x product name or a number specifies the product row in the data.frame generated
by modisProduct function. It can also be the http address of the product.

h together with v specify the position of the Modis image tile(s). Examples: h=15;
h=c(14,15); v=c(4:7)

v see the above descriptopn for h

dates a character vector with the length of one or two, specifiying an individual date
or a range of dates as the form of c(from, to)

hdfName the name of hdf file

12 ModisDownload

crs coordinate reference system definiation (or a SpatRaster defines definition of
new Raster for resampling)

subset integer vector specifies the layer number for subsetting bands
resample_method

resample method for reprojection based on GDAL, can be one of "near","bilinear","cubic",or
"cubicspline" (default: "near")

hdfNames the names of hdf files

MRTpath Path to the bin folder into the installed directory of MRT software. It is needed
only if you need to mosaic and/or reproject the images. Example: MRTpath="d:/MRT/bin"

filename the name of new file

version the product version. The default value is ’006’

bands_subset HDF-EOS input files contain several layers of data (bands). Through this argu-
ment you ca select a subset of bands. You need to know how many bands the
product has, and which bands you want to be subset. Example: Suppose your
image has 6 bands and you only need the second band. The parameter should
be entered as: bands_subset="0 1 0 0 0 0".

delete Logical. If TRUE, the original HDF files will be deleted after mosaic or reproject
into new files.

forceReDownload

logical, specify whether the product should be re-downloaded if it had been
downloaded before. The downloaded products are cashed using a hash digest of
the inputs. If the download is canceled mid-way and the same exact products
are downloaded again, it can be useful to avoid re-downloading them.

ncore numerical; specify the number of cores used to speed up the download; ’auto’
can be used instead to detect the number of cores and use half of them

product The product name; can be extracted from the modisProduct function

... additional arguments including:
- mosaic: logical, if TRUE, the images (several tiles) are mosaic into a single
image
- proj: Logical. If TRUE, it means that you want to reproject the images. Then
reprojectHDF function will be called to reproject the images.
- UL: Optional. Upper Left coordinate (x,y) in output coordinate system. Only if
you want to spatially subset your images.
- LR: Optional. Lower right coordinate(x,y). Only if you want to spatially subset
your images.
- resample_type: Resampling kernel type for MRT ("CUBIC_CONVOLUTION",
"NEAREST_NEIGHBOR", or "BILINEAR"). The default is "NEAREST_NEIGHBOR".
- proj_type: Output projection short name. Valid values are "AEA" (Albers
EqualArea), "ER" (Equirectangular), "GEO" (Geographic), "IGH" (Interrupted
Goode Homolosine), "HAM" (Hammer), "ISIN" (Integerized Sinusoidal), "LA"
(Lambert Azimuthal Equal Area), "LCC" (Lambert Conformal Conic), "MER-
CAT" (Mercator), "MOL" (Molleweide), "PS" (Polar Stereographic), "SIN" (Si-
nusoidal), "TM" (Transverse Mercator), and "UTM" (Universal Transverse Mer-
cator).

ModisDownload 13

- proj_params: Output projection parameters. This quoted, floating-point list
includes up to 15 projection parameters, with each value separated by white
space ("p1 p2 ... p15"). If there are fewer than 15 values specified in the list,
the remaining values will be set to zero. Integer values will automatically be
converted to floating point (See the MRT software manual for the details).
- datum: Specifies the output projection datum. The default is "WGS84"
- utm_zone: Valid only if "UTM" is selected for the proj_type.
- pixel_size: Output pixel size.

Details

To be able to download the data, you need to register on "https://urs.earthdata.nasa.gov/" and get a
username and password. To pass the authentication by the website, you need to set the username and
password on the machine (only first time) using setNASAauth function. Just specify the username
and password in the function for the first time, and then the ModisDownload function can use it
everytime you need to download the data.

To have the functionality for Mosaic and reprojecting of the images, you need to first install MRT
software on your machine, and introduce its’ path through the MRTpath argument. Otherwise, it
can only be used for automating the downloading procedure.

The functions ModisDownload uses the functions including getMODIS, mosaicHDF (if needed), and
reprojectHDF (if needed). The functions getMODIS, can be used to download HDF files, while
mosaicHDF and reprojectHDF can mosaic and reproject the HDF files, respectively.

Author(s)

Babak Naimi & Pablo Alfaro

<naimi.b@gmail.com>

https://r-gis.net/

Examples

Not run:
library(raster)

library(RCurl)

First, you need to register on https://urs.earthdata.nasa.gov/ and get a username and password
for the first time, set the authentication info:

setNASAauth(username='myusername',password='mypass')

product list:

modisProducts(version=5)
modisProducts(version=6)
modisProducts(version=NULL) # both versions

#x=3 # or x="MOD14A1"

https://r-gis.net/

14 ModisDownload

download 4 tiles (h14v04, h14v05, h15v04, h15v05) in single date (2011.05.01)

Following command only downloads the source HDF images, no mosaic and no projection

ModisDownload(x=x,h=c(17,18),v=c(4,5),dates='2011.05.01',mosaic=F,proj=F,version='006')

alternatively, you can use getMODIS to download only HDF images:

getMODIS(x=x,h=c(17,18),v=c(4,5),dates='2011.05.01',version='006')

same as the above command, but downloads all available images in 2011:

ModisDownload(x=x,h=c(17,18),v=c(4,5),dates=c('2011.01.01','2011.12.31'),version='006')

#------

Downloads selected tiles, and mosaic them, but no projections:

ModisDownload(x=x,h=c(17,18),v=c(4,5),dates=c('2011.05.01','2011.05.31'),
MRTpath='d:/MRT/bin',mosaic=T,proj=F,version='006')

#--- alternatively, you can first download the HDF images using getMODIS,
#and then mosaic them using mosaicHDF!

Downloads selected tiles, and mosaic, reproject them in UTM_WGS84, zone 30 projection and
#convert all bands into Geotif format (the original HDF will be deleted!):

ModisDownload(x=x,h=c(17,18),v=c(4,5),dates=c('2011.05.01','2011.05.31'),MRTpath='d:/MRT/bin',
mosaic=T,proj=T,proj_type="UTM",utm_zone=30,datum="WGS84",
pixel_size=1000,version='006')

Same as above command, but only second band out of 6 bands will be kept. (You do not need
#to specify proj_params when "UTM" is selected as proj_type and the zone also is specified,
#but for other types of projections you do).

ModisDownload(x=x,h=c(17,18),v=c(4,5),dates=c('2011.05.01','2011.05.31'),MRTpath='d:/MRT/bin',
mosaic=T,proj=T, bands_subset="0 1 0 0 0 0", proj_type="UTM",
proj_params="-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0",utm_zone=30,
datum="WGS84",pixel_size=1000,version='006')

Same as above command, but it spatially subsets the images into the specified box (UL and LR):

ModisDownload(x=x,h=c(17,18),v=c(4,5),dates=c('2011.05.01','2011.05.31'),MRTpath='d:/MRT/bin',
mosaic=T,proj=T,UL=c(-42841.0,4871530.0),LR=c(1026104,3983860),
bands_subset="0 1 0 0 0 0", proj_type="UTM",
proj_params="-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0",utm_zone=30,datum="WGS84",
pixel_size=1000,version='006')

period.apply 15

End(Not run)

period.apply Apply a function over specified time intervals

Description

Apply specified function over each period of date/time defined in INDEX at each grid cell.

Usage

period.apply(x, INDEX, FUN, ...)

Arguments

x a raster time series (Raster*TS) object created by rts

INDEX a numeric vector of endpoints of time/date periods to apply function over

FUN an argument of type function

... additional arguments for FUN

Details

This functions subsets the raster data based on the specified time periods (endpoint for each period
should be specified in INDEX), and FUN function will be applied to the subsetted values at each grid
cell for each period. For each period, a raster will be calculated and the end of the date/time period
will be assigned to it in the output raster time series object. If the INDEX is out of range, the function
stops working and an error is generated.

Value

RasterStackTS or RasterBrickTS

Author(s)

Babak Naimi

<naimi.b@gmail.com>

https://r-gis.net/

See Also

period.apply

https://r-gis.net/

16 plot

Examples

Not run:
file <- system.file("external/ndvi", package="rts")

ndvi <- rts(file) # read the ndvi time series from the specified file

ndvi

ep <- endpoints(ndvi,'years') # extract the end index on each year period

ndvi.y <- period.apply(ndvi,ep,mean) # apply the mean function on each year

ndvi.y

#---------
ep <- endpoints(ndvi,'quarters') # extract the end index on each quarter of a year

a function:
f <- function(x) {

if (min(x) > 0.5) mean(x)
else 0

}

ndvi.q <- period.apply(ndvi,ep,f) # apply the function f on each quarter

End(Not run)

plot Plot raster time series

Description

Plot raster layers corresponding to specified times, or plot extracted time-series values at a location
(cell) or a number of cells as a rts object.

Usage

S4 method for signature 'RasterStackBrickTS,ANY'
plot(x, y, ...)
S4 method for signature 'rts,ANY'
plot(x, y, ...)

Arguments

x an object of raster time series class (Raster*TS), or an object of rts class.

plot 17

y optional. if x is a Raster*TS object, this item defines time range specifying
which layers of raster time series should be plotted. if x is an rts object, this
item specifies which column (corresponding to a cell) of time-series data should
be plotted (default=1). y='all' indicates all series in rts object should be
included in plot.

... additional argument as in plot in raster package or in graphics package.

Details

If x is a Raster*TS object:

This function, first, selects the layers corresponding to the time range specified in y and then call
plot function in raster package to plot the selected raster layers. If y is not specified, all layers
will be sent to plot function.

Same as in extract and subset functions, When a raw character vector is used for the y, it is
processed as if it was ISO-8601 compliant. This means that it is parsed from left to right, according
to the following specification:

CCYYMMDD HH:MM:SS.ss+

A full description will be expanded from a left-specified truncated one.

Additionally, one may specify range-based queries by simply supplying two time descriptions seper-
ated by a forward slash:

CCYYMMDD HH:MM:SS.ss+/CCYYMMDD HH:MM:SS.ss

x can be an rts object. rts is a subclass of xts, created by extract function.

Author(s)

Babak Naimi

<naimi.b@gmail.com>

https://r-gis.net/

See Also

plot, extract, subset

Examples

Not run:
file <- system.file("external/ndvi", package="rts")

ndvi <- rts(file) # read the ndvi time series from the specified file

plot(ndvi,1:4) # plot the first 4 layers in the raster time series

plot(ndvi,"/20010101")

plot(ndvi,"20010101/20010501")

plot(ndvi,"2001-02-01/2001-05-01")

https://r-gis.net/

18 RasterStackBrickTS-class

plot(ndvi,"2001-02-01")

n1 <- extract(ndvi,125)# extract the time series values at cell number 125 for all times

plot(n1)

n2 <- extract(ndvi,125,"/20090101") # extract the time series values at cell number 125
for all times after 2009-01-01

n2

plot(n2)

n3 <- extract(ndvi,125:127,"200901/") # extract the time series values at the specified cell
numbers for all times before 2009-01

n3

plot(n3) # plot the time-series values for the first series in n3 (i.e cell: 125)

plot(n3,y=1:3) # plot for the 3 series in n3 (i.e cells of 125:127)

plot(n3,y=1:3,col=1)

plot(n3,y=1:3,col=c(1,4,5))

plot(n3,y='all')

End(Not run)

RasterStackBrickTS-class

rts classes

Description

A raster time series contains a collection of RasterLayer objects, each corresponds to a time/date.

RasterStackTS and RasterBrickTS classes are created by putting together a RasterStack or
RasterBrick object, from the raster package, and an xts object, from the xts package. A RasterStack
and RasterBrick represents a collection of RasterLayer objects with the same extent and reso-
lution. An xts object extends the S3 class zoo from the package of the same name. This object
provides the index values that is unique and ordered, and also is a time-based class. Currently ac-
ceptable classes include: ’Date’, ’POSIXct’, ’timeDate’, as well as ’yearmon’ and ’yearqtr’ where
the index values remain unique.

rts is a subclass of xts class.

read.rts 19

Slots

Slots for Raster*TS object:

raster: object of class RasterStack or RasterBrick

rime: object of class xts
See also Raster-class for slots in raster.

Author(s)

Babak Naimi

<naimi.b@gmail.com>

https://r-gis.net/

Examples

showClass("RasterStackTS")

read.rts Read raster time Series data from a file

Description

Read a raster time series object from a file.

Usage

read.rts(filename,...)

Arguments

filename Filename (character)

... see details

Details

This function reads a raster time series object which has been writen by write.rts. Instead of
read.rts, the rts function can be used (usage: rts(filename)).

By default, the Raster Time Series is read as the class of SpatRasterTS, but the user can provide
cls argument to specify a different rts class (e.g., cls='RasterBrickTS')

Value

RasterBrickTS

https://r-gis.net/

20 rts

Author(s)

Babak Naimi

<naimi.b@gmail.com>

https://r-gis.net/

See Also

write.rts, rts

Examples

Not run:
file <- system.file("external/ndvi", package="rts")

rt <- read.rts(file)

rt

or alternatively:
rt <- rts(file)

End(Not run)

rts Create a Raster Time Series object

Description

Constructor function to create a raster time series (Raster*TS) object. rts object can be created from
a vector of image files names, a RasterStack or a RasterBrick object (defined in raster) together with
a vector of time/dates-must be of known time-based class. This function can also be used to read a
raster time series file.

Usage

rts(x, time,...)

Arguments

x A character vector including names of image/raster files, or RasterStack or
RasterBrick object, or the name (character) of a raster time series file

time a vector holding date/time data with the same length as rasters in Raster* object
or name of files in character vector

... see details

https://r-gis.net/

rts 21

Details

A raster time series object is created by combining a RasterStack or RasterBrick objct, defined
in raster and a xts object in xts-package. RasterStack or RasterBrick can be created by using
stack and brick functions, respectively in raster-package. If a character vector including the
name of raster files is used for x, stack function is internally called by rts. time information is
handled by xts object. The date/time values in the vector of time should be correspond to the raster
files (i.e. first date/time for first raster, ...) and have the same length as the number of rasters in x.

If a name of a raster time series file is provided for the x argument, it acts the same as coderead.rts.

If x is the name of Raster Time Series file (a character), it calls read.rts to read the file. By default,
the Raster Time Series is read as the class of SpatRasterTS, but the user can provide cls argument
to specify a different rts class (e.g., cls='RasterBrickTS')

Value

RasterStackTS or RasterBrickTS

Author(s)

Babak Naimi

<naimi.b@gmail.com>

https://r-gis.net/

See Also

stack, brick, xts

Examples

Not run:
path <- system.file("external", package="rts") # location of files

lst <- list.files(path=path,pattern='.asc$',full.names=TRUE)
lst # list of raster files

r <- rast(lst) # creating a RasterStack object

r

d <- c("2000-02-01","2000-03-01","2000-04-01","2000-05-01") # corresponding dates to 4 rasters
d <- as.Date(d) # or d <- as.POSIXct(d)

rt <- rts(r,d) # creating a RasterStackTS object

rt

plot(rt)

End(Not run)

https://r-gis.net/

22 subset

subset Subset layers in a raster time series object

Description

Extract layers from a Raster*TS object.

Details

This function can be used to extract a raster layer or a set of raster lasyers based on the time-index
using date-like string. The format must left-specied with respect to the standard ISO:8601 time
format "CCYY-MM-DD HH:MM:SS". It is also possible to specify a range of times via the index-
based subsetting, using ISO-recommended "/" as the range operator. The basic form is "from/to",
where both are optional. If either side is missing, it is interpretted as a request to retrieve raster
layers from the beginning, or through the end of the raster time series object. Both subset function
and '[[' operator do the same thing.

Value

RasterStackTS or RasterBrickTS.

Methods

subset(x, subset, ...)

Arguments
x is a raster time series (Raster*TS) object created by rts

subset is indicates the layers (represented as a vector of numeric or character string relevant
to time index, or by a time-based object).
... - same as ... in subset function in package raster

Author(s)

Babak Naimi

<naimi.b@gmail.com>

https://r-gis.net/

See Also

subset and [.xts

https://r-gis.net/

subset by index 23

Examples

Not run:
file <- system.file("external/ndvi", package="rts")

ndvi <- rts(file) # read the ndvi time series from the specified file

s1 <- subset(ndvi,1:5) # subset the first 5 raster layers into a new raster time series object

s1

plot(s1)

s2 <- subset(ndvi,"/2000") # subset all layers till end of year 2000

s2

plot(s2)

s3 <- subset(ndvi,"2000-01-01/2000-05-31")

s3

plot(s3)

End(Not run)

subset by index Subset layers in a raster time series object by index

Description

Extract layers from a Raster*TS object by index (i.e. double bracket, [[).

Details

This function can be used to extract a raster layer or a set of raster lasyers based on the time-index
using date-like string. The format must left-specied with respect to the standard ISO:8601 time
format "CCYY-MM-DD HH:MM:SS". It is also possible to specify a range of times via the index-
based subsetting, using ISO-recommended "/" as the range operator. The basic form is "from/to",
where both are optional. If either side is missing, it is interpretted as a request to retrieve raster
layers from the beginning, or through the end of the raster time series object. Both subset function
and '[[' operator do the same thing.

Value

RasterStackTS or RasterBrickTS.

24 VHPdownload

Methods

x[[i, ...]]

Arguments
i - indicates the layers (represented as a vector of numeric or character string relevant to time
index, or by a time-based object).
... - same as ... in subset function in package raster

Author(s)

Babak Naimi

<naimi.b@gmail.com>

https://r-gis.net/

See Also

subset

Examples

Not run:
file <- system.file("external/ndvi", package="rts")

ndvi <- rts(file) # read the ndvi time series from the specified file

s1 <- ndvi[["2000-01-01/2000-05-31"]]

s1

plot(s1)

End(Not run)

VHPdownload Download AVHRR-based Vegetation and Drought satellite image
products

Description

’VHPdownload’ downloads a series of AVHRR and VIIRS images in a specific date or a period of
dates. The format of the files are downloaded as GeoTiff, and they can be optionally returned as a
Raster Time Series Object.

Usage

VHPdownload(x,dates,rts,ncore,...)

https://r-gis.net/

VHPdownload 25

Arguments

x product name; it can be either of c('VHI','VCI','SMN','SMT','TCI')

dates a vector, character or Date, with one or two items, specifiying an individual date
or a range of dates as the form of c(from, to)

rts logical; specifies whether the downloaded files should be returned as a Raster
Time Series object

ncore numeric; specifies the number of cores to use for parallel downloading of the
files

... additional arguments (Not implemented yet.)

Details

This function assists to download Blended Vegetation Health Indices Product (blended VIIRS
(2013-present) and AVHRR (1981-2012), below, referred as Blended-VHP or VHP). These im-
ages for are available with a weekly temporal resolution and a spatial resolution of 4 KM. Five
products are available that are specified with the following abbreviations:

- 'SMT': Smoothed Brightness Temperature - 'SMN': Smoothed NDVI - 'TCI': Temperature Con-
dition Index - 'VHI': Vegetation Health Index - 'VCI': Vegetation Condition Index

Data arrays are in geographic projection (grid with equal latitude and longitude interval).

Author(s)

Babak Naimi

<naimi.b@gmail.com>

https://r-gis.net/

Examples

Not run:
library(raster)

library(RCurl)

download Vegetation Health Index for two months
vhi <- VHPdownload(x='VHI',dates=c('2015.01.01','2015.02.28'),rts=TRUE) # output is as rts object

vhi

plot(vhi[[1]])

plot(vhi[2120000]) # plot time series at the specified cell number

to make sure the dates are appropriately specified, use a Date object:

dates <- as.Date(c('2015.01.01','2016.12.31'),format="

https://r-gis.net/

26 write.rts

dates

class(dates)

dates <- as.Date(c('2012-01-01','2012-12-31'),format="

dates

If your machine has multiple cores, you can use parallel downloading to speed up the downloads
Vegetation Condition Index for two years
vci <- VHPdownload(x='VCI',dates=dates,rts=TRUE,ncore=4)

vci

plot(vci[[1:2]])

End(Not run)

write.rts Write raster time Series data to a file

Description

Write an entire (Raster*TS) object to a file.

Usage

write.rts(x, filename, overwrite=FALSE, ...)

Arguments

x a raster time series (Raster*TS) object created by rts

filename Output filename

overwrite Logical. If TRUE, "filename" will be overwritten if it exists

... Additional arguments as for writeRaster:
datatype Character. utput data type (e.g. ’INT2S’ or ’FLT4S’). See dataType.
If no datatype is specified, ’FLT4S’ is used.
bandorder: Character. ’BIL’, ’BIP’, or ’BSQ’.

Details

This function writes a raster time series object into a directory which named as is specified in the
filename argument. To write the raster data, writeRaster in the package raster is used. The
function writes the time information into a separate ascii file.

write.rts 27

Value

This function is used for writing values to a series of files.

Author(s)

Babak Naimi

<naimi.b@gmail.com>

https://r-gis.net/

See Also

read.rts, writeRaster

Examples

Not run:
path <- system.file("external", package="rts") # location of files

lst <- list.files(path=path,pattern='.asc$',full.names=TRUE)
lst # list of raster files

r <- stack(lst) # creating a RasterStack object

d <- c("2000-02-01","2000-03-01","2000-04-01","2000-05-01") # corresponding dates to 4 rasters
d <- as.Date(d) # or d <- as.POSIXct(d)

n <- rts(r,as.Date(d)) # creating a RasterStackTS object

write.rts(n,"nf") # writing n into the working directory

rt <- read.rts("nf") # reading nf from the working directory

rt

End(Not run)

https://r-gis.net/

Index

∗ classes
RasterStackBrickTS-class, 18

∗ download
VHPdownload, 24

∗ map
VHPdownload, 24

∗ methods
plot, 16

∗ raster
read.rts, 19
rts, 20
write.rts, 26

∗ spatial
cellFromXY, 3
dimensions, 4
ModisDownload, 11
plot, 16
RasterStackBrickTS-class, 18
VHPdownload, 24

∗ time series
rts, 20

∗ utilities
endpoints, 5
extract, 6
Extract by index, 8
index, 10
period.apply, 15
subset, 22
subset by index, 23

∗ write
read.rts, 19
write.rts, 26

[,RasterStackBrickTS,Extent,ANY-method
(Extract by index), 8

[,RasterStackBrickTS,Spatial,ANY-method
(Extract by index), 8

[,RasterStackBrickTS,numeric,ANY-method
(Extract by index), 8

[,SpatRasterTS,SpatExtent,ANY-method

(Extract by index), 8
[,SpatRasterTS,SpatVector,ANY-method

(Extract by index), 8
[,SpatRasterTS,Spatial,ANY-method

(Extract by index), 8
[,SpatRasterTS,numeric,ANY-method

(Extract by index), 8
[,stcube,SpatExtent,ANY-method

(Extract by index), 8
[,stcube,SpatVector,ANY-method

(Extract by index), 8
[,stcube,numeric,ANY-method (Extract

by index), 8
[.xts, 7, 9, 22
[[,RasterStackBrickTS,ANY,ANY-method

(subset by index), 23
[[,SpatRasterTS,ANY,ANY-method (subset

by index), 23
[[,stcube,ANY,ANY-method (subset by

index), 23

apply.daily (apply.monthly), 2
apply.daily,RasterStackBrickTS-method

(apply.monthly), 2
apply.daily,SpatRasterTS-method

(apply.monthly), 2
apply.monthly, 2
apply.monthly,RasterStackBrickTS-method

(apply.monthly), 2
apply.monthly,SpatRasterTS-method

(apply.monthly), 2
apply.quarterly (apply.monthly), 2
apply.quarterly,RasterStackBrickTS-method

(apply.monthly), 2
apply.quarterly,SpatRasterTS-method

(apply.monthly), 2
apply.weekly (apply.monthly), 2
apply.weekly,RasterStackBrickTS-method

(apply.monthly), 2

28

INDEX 29

apply.weekly,SpatRasterTS-method
(apply.monthly), 2

apply.yearly (apply.monthly), 2
apply.yearly,RasterStackBrickTS-method

(apply.monthly), 2
apply.yearly,SpatRasterTS-method

(apply.monthly), 2

brick, 21

cellFromRowCol, 3
cellFromRowCol (cellFromXY), 3
cellFromRowCol,RasterStackBrickTS,numeric,numeric-method

(cellFromXY), 3
cellFromRowCol,SpatRasterTS,numeric,numeric-method

(cellFromXY), 3
cellFromXY, 3, 3
cellFromXY,RasterStackBrickTS-method

(cellFromXY), 3
cellFromXY,SpatRasterTS-method

(cellFromXY), 3

dataType, 26
dim (dimensions), 4
dim,stcube-method (dimensions), 4
dimensions, 4

endpoints, 3, 5, 5, 6
endpoints,RasterStackBrickTS-method

(endpoints), 5
endpoints,SpatRasterTS-method

(endpoints), 5
Extent, 7, 9
extract, 6, 7–9, 17
Extract by index, 8
extract,RasterStackBrickTS,Extent-method

(extract), 6
extract,RasterStackBrickTS,numeric-method

(extract), 6
extract,RasterStackBrickTS,Spatial-method

(extract), 6
extract,SpatRasterTS,numeric-method

(extract), 6
extract,SpatRasterTS,SpatExtent-method

(extract), 6
extract,SpatRasterTS,SpatVector-method

(extract), 6
extract,stcube,numeric-method

(extract), 6

extract,stcube,SpatExtent-method
(extract), 6

extract,stcube,SpatVector-method
(extract), 6

getMODIS (ModisDownload), 11
getMODIS,character-method

(ModisDownload), 11
getMODIS,numeric-method

(ModisDownload), 11
getNativePixelSize (ModisDownload), 11
getNativeTemporalResolution

(ModisDownload), 11

index, 10
index.xts, 10
index<- (index), 10

ModisDownload, 11
ModisDownload,character-method

(ModisDownload), 11
ModisDownload,numeric-method

(ModisDownload), 11
modisProducts (ModisDownload), 11
mosaicHDF (ModisDownload), 11
mosaicHDF,character-method

(ModisDownload), 11
mosaicHDF,numeric-method

(ModisDownload), 11

ncell (dimensions), 4
ncell,stcube-method (dimensions), 4
ncol (dimensions), 4
ncol,stcube-method (dimensions), 4
nlyr (dimensions), 4
nlyr,stcube-method (dimensions), 4
nrow (dimensions), 4
nrow,stcube-method (dimensions), 4

period.apply, 3, 15, 15
period.apply,RasterBrickTS-method

(period.apply), 15
period.apply,RasterStackTS-method

(period.apply), 15
period.apply,SpatRasterTS-method

(period.apply), 15
plot, 16, 17
plot,RasterStackBrickTS,ANY-method

(plot), 16

30 INDEX

plot,RasterStackBrickTS-method (plot),
16

plot,rts,ANY-method (plot), 16
plot,rts-method (plot), 16
plot,SpatRasterTS,ANY-method (plot), 16

RasterBrickTS-class
(RasterStackBrickTS-class), 18

RasterStackBrickTS-class, 18
RasterStackTS-class

(RasterStackBrickTS-class), 18
read.rts, 19, 21, 27
read.rts,character-method (read.rts), 19
reprojectHDF (ModisDownload), 11
reprojectHDF,character-method

(ModisDownload), 11
reprojectHDF,numeric-method

(ModisDownload), 11
res (dimensions), 4
res,stcube-method (dimensions), 4
rts, 2, 5, 7, 9, 15, 20, 20, 22, 26
rts,character,ANY-method (rts), 20
rts,character,missing-method (rts), 20
rts,RasterBrick,ANY-method (rts), 20
rts,RasterStack,ANY-method (rts), 20
rts,SpatRaster,ANY-method (rts), 20
rts,xts,ANY-method (rts), 20
rts-class (RasterStackBrickTS-class), 18

setMRTpath (ModisDownload), 11
setMRTpath,ANY-method (ModisDownload),

11
setNASAauth (ModisDownload), 11
setNASAauth,ANY-method (ModisDownload),

11
show,RasterBrickTS-method

(RasterStackBrickTS-class), 18
show,RasterStackTS-method

(RasterStackBrickTS-class), 18
show,SpatRaster-method

(RasterStackBrickTS-class), 18
SpatialLines, 7, 9
SpatialPoints, 7, 9
SpatialPolygons, 7, 9
SpatRasterTS-class

(RasterStackBrickTS-class), 18
stack, 21
subset, 17, 22, 22, 24
subset by index, 23

subset,RasterStackBrickTS-method
(subset), 22

subset,SpatRasterTS-method (subset), 22
subset,stcube-method (subset), 22

VHPdownload, 24
VHPdownload,character-method

(VHPdownload), 24

write.rts, 19, 20, 26
write.rts,RasterStackBrickTS,character-method

(write.rts), 26
write.rts,SpatRasterTS,character-method

(write.rts), 26
writeRaster, 26, 27

xres (dimensions), 4
xres,stcube-method (dimensions), 4
xts, 21
xts-class (RasterStackBrickTS-class), 18

yres (dimensions), 4
yres,stcube-method (dimensions), 4

	apply.monthly
	cellFromXY
	dimensions
	endpoints
	extract
	Extract by index
	index
	ModisDownload
	period.apply
	plot
	RasterStackBrickTS-class
	read.rts
	rts
	subset
	subset by index
	VHPdownload
	write.rts
	Index

